# Table of contents

## 1 About these instructions for use

1.1 Target groups
1.2 Labelling of notes
1.3 About this translated version

## 2 Product information

2.1 Standards and regulations
2.2 Intended use
2.2.1 Areas of use
2.2.2 Media
2.3 Product description
2.3.1 Overview
2.3.2 Pipes
2.3.3 Press connectors
2.3.4 Sealing elements
2.3.5 Markings on components
2.4 Information for use
2.4.1 Corrosion

## 3 Handling

3.1 Transport
3.2 Storage
3.3 Assembly information
3.3.1 Mounting instructions
3.3.2 Potential equalisation
3.3.3 Permitted exchange of sealing elements
3.3.4 Space requirements and intervals
3.3.5 Required tools
3.4 Assembly
3.4.1 Replacing the sealing element
3.4.2 Bending pipes
3.4.3 Shortening the pipes
3.4.4 Stripping pipes
3.4.5 Deburring the pipes
3.4.6 Pressing the connection
3.4.7 Leakage test
3.5 Disposal
1 About these instructions for use

Trade mark rights exist for this document; for further information, go to viega.com/legal.

1.1 Target groups

The information in this manual is directed at heating and sanitary professionals and trained personnel.

Individuals without the abovementioned training or qualification are not permitted to mount, install and, if required, maintain this product. This restriction does not extend to possible operating instructions.

The installation of Viega products must take place in accordance with the general rules of engineering and the Viega instructions for use.

1.2 Labelling of notes

Warning and advisory texts are set aside from the remainder of the text and are labelled with the relevant pictographs.

**DANGER!**
This symbol warns of possible life-threatening injury.

**WARNING!**
This symbol warns of possible serious injury.

**CAUTION!**
This symbol warns of possible injury.

**NOTICE!**
This symbol warns of possible damage to property.

This symbol gives additional information and hints.
1.3  About this translated version

This instruction for use contains important information about the choice of product or system, assembly and commissioning as well as intended use and, if required, maintenance measures. The information about the products, their properties and application technology are based on the current standards in Europe (e. g. EN) and/or in Germany (e. g. DIN/DVGW).

Some passages in the text may refer to technical codes in Europe/ Germany. These should serve as recommendations in the absence of corresponding national regulations. The relevant national laws, standards, regulations, directives and other technical provisions take priority over the German/European directives specified in this manual: The information herein is not binding for other countries and regions; as said above, they should be understood as a recommendation.
2 Product information

2.1 Standards and regulations

The following standards and regulations apply to Germany / Europe. National regulations can be found on the relevant web site of your country at viega.com/standards.

Regulations from section: Fields of application

<table>
<thead>
<tr>
<th>Scope / Notice</th>
<th>Regulations applicable in Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application in fire extinguishing systems</td>
<td>DIN 14462</td>
</tr>
</tbody>
</table>

Regulations from section: Media

<table>
<thead>
<tr>
<th>Scope / Notice</th>
<th>Regulations applicable in Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitability for low-salt / saline drinking water</td>
<td>VDI-Richtlinie 2035, Table 1</td>
</tr>
<tr>
<td>Suitability for heating water for pump hot water heating systems</td>
<td>VDI-Richtlinie 2035, Sheet 1 and Sheet 2</td>
</tr>
</tbody>
</table>

Regulations from section: Sealing elements

<table>
<thead>
<tr>
<th>Scope / Notice</th>
<th>Regulations applicable in Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of use of the EPDM sealing element</td>
<td>DIN EN 12828</td>
</tr>
<tr>
<td>Heating</td>
<td></td>
</tr>
</tbody>
</table>

Regulations from section: Corrosion

<table>
<thead>
<tr>
<th>Scope / Notice</th>
<th>Regulations applicable in Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry of oxygen during re-filling of a system</td>
<td>DIN EN 14868 (2005–11)</td>
</tr>
<tr>
<td>Oxygen content in low-salt / saline water</td>
<td>VDI-Richtlinie 2035 Table 1</td>
</tr>
<tr>
<td>Complete external corrosion protection for application in cooling circuits</td>
<td>DIN 50929</td>
</tr>
<tr>
<td>Complete external corrosion protection for application in cooling circuits</td>
<td>AGI-Arbeitsblatt Q 151</td>
</tr>
</tbody>
</table>
Regulations from section: Storage

<table>
<thead>
<tr>
<th>Scope / Notice</th>
<th>Regulations applicable in Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for material storage</td>
<td>DIN EN 806-4, Chapter 4.2</td>
</tr>
</tbody>
</table>

Regulations from section: Leakage test

<table>
<thead>
<tr>
<th>Scope / Notice</th>
<th>Regulations applicable in Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test on a system that is finished but not yet covered</td>
<td>DIN EN 806–4</td>
</tr>
<tr>
<td>Leakage test for water installations</td>
<td>ZVSHK-Merkblatt: &quot;Dichtheitsprüfungen von Trinkwasserinstallationen mit Druckluft, Inertgas oder Wasser&quot;</td>
</tr>
<tr>
<td>Requirements in filling and top-up water</td>
<td>VDI 2035</td>
</tr>
</tbody>
</table>

2.2 Intended use

Coordinate the use of the system for areas of use and media other than those described with the Viega Service Center.

2.2.1 Areas of use

The system is intended for use in industrial and heating systems. The system is not suitable for use in drinking water installations. For this reason, pipes and connectors are labelled with a red symbol "Not drinking water".

Use is possible in the following areas among others:
- Industrial and heating systems
- Wet sprinkler systems (with hot dip galvanised pipe)
Fire extinguishing systems, see “Regulations from section: Fields of application“ on page 6
- wet (with hot dip galvanised pipe)

Solar installations with flat collectors

Solar installations with vacuum collectors (only with FKM sealing element)

Compressed air systems

Cooling water pipelines (closed circuit)

Vacuum systems (on request)

Systems for technical gases (on request)

Painting systems (only for labs-free components)

Air-conditioning systems

---

**2.2.2 Media**

The system can be employed in closed water circuits, into which no oxygen can enter during operation.

The following limits are valid for the oxygen content, see “Regulations from section: Media“ on page 6:

- water with a low salt content ≤ 0.1 mg/l
- saline water < 0.02 mg/l

The system is also suitable for the following media, amongst others:

For the applicable directives, see “Regulations from section: Media“ on page 6.

- Heating water for closed pump hot water heating systems
- Compressed air (dry) in compliance with the specification of the sealing elements being used
  - EPDM at oil concentration < 25 mg/m³
  - FKM at oil concentration ≥ 25 mg/m³
- Anti-freeze, cooling brines up to a concentration of 50 %

---

**NOTICE!**
Do not use hot dip galvanised pipes for cooling water with additives (such as anti-freeze). Otherwise, the zinc layer in the internal pipe may dissolve and unit components may get clogged.
2.3  Product description

2.3.1  Overview

The piping system consists of press connectors in connection with non-
alloy steel pipes and the corresponding press tools.

Fig. 2: Prestabo range selection

The system components are available in the following dimensions:

\[ d = 12 / 15 / 18 / 22 / 28 / 35 / 42 / 54 \]

2.3.2  Pipes

Prestabo pipes are available in a length of 6 m.

The following pipes are available from the system described:

<table>
<thead>
<tr>
<th>Type of pipe</th>
<th>Prestabo pipe</th>
<th>Prestabo pipe, coated (1 mm PP)</th>
<th>Prestabo pipe for special applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of use</td>
<td>Industrial and heating systems</td>
<td>Industrial and heating systems in wall-mounted installations</td>
<td>Sprinkler(^1) and compressed air systems</td>
</tr>
<tr>
<td>( d ) [mm]</td>
<td>12 / 15 / 18 / 22 / 28 / 35 / 42 / 54</td>
<td>15 / 18 / 22 / 28 / 35 / 42 / 54</td>
<td>15(^1) / 18(^1) / 22 / 28 / 35 / 42 / 54</td>
</tr>
<tr>
<td>Type of galvanisation</td>
<td>externally galvanised</td>
<td>externally galvanised</td>
<td>hot dip galvanised inside and outside</td>
</tr>
</tbody>
</table>

\(^1\) Pipes with diameters of 15 mm and 18 mm may not be installed in sprinkler systems, as they are not VdS certified.
Type of pipe | Prestabo pipe | Prestabo pipe, coated (1 mm PP) | Prestabo pipe for special applications
---|---|---|---
Thickness of the zinc plating | 8–15 μm | 8–15 μm | >20 μm
Protective cap | red | red | white

1) Pipes with diameters of 15 mm and 18 mm may not be installed in sprinkler systems, as they are not VdS certified.

**Coated Prestabo pipes** are coated with a 1 mm thick polypropylene layer (PP) and therefore especially suitable for wall-mounted installations.

*Hot dip galvanised pipes are not suitable for heating and cooling systems.*

### Pipe key data blank Prestabo pipe

<table>
<thead>
<tr>
<th>d x s [mm]</th>
<th>Volume per metre of pipe [l/m]</th>
<th>Pipe weight [kg/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 x 1.2</td>
<td>0.07</td>
<td>0.32</td>
</tr>
<tr>
<td>15 x 1.2</td>
<td>0.13</td>
<td>0.41</td>
</tr>
<tr>
<td>18 x 1.2</td>
<td>0.19</td>
<td>0.50</td>
</tr>
<tr>
<td>22 x 1.5</td>
<td>0.28</td>
<td>0.80</td>
</tr>
<tr>
<td>28 x 1.5</td>
<td>0.49</td>
<td>1.00</td>
</tr>
<tr>
<td>35 x 1.5</td>
<td>0.80</td>
<td>1.20</td>
</tr>
<tr>
<td>42 x 1.5</td>
<td>1.19</td>
<td>1.50</td>
</tr>
<tr>
<td>54 x 1.5</td>
<td>2.04</td>
<td>2.00</td>
</tr>
</tbody>
</table>

### Pipe key data PP coated Prestabo pipe

<table>
<thead>
<tr>
<th>d x s [mm]</th>
<th>Volume per metre of pipe [l/m]</th>
<th>Pipe weight [kg/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 x 1.2</td>
<td>0.13</td>
<td>0.45</td>
</tr>
<tr>
<td>18 x 1.2</td>
<td>0.19</td>
<td>0.60</td>
</tr>
<tr>
<td>22 x 1.5</td>
<td>0.28</td>
<td>0.82</td>
</tr>
<tr>
<td>28 x 1.5</td>
<td>0.49</td>
<td>1.10</td>
</tr>
<tr>
<td>35 x 1.5</td>
<td>0.80</td>
<td>1.30</td>
</tr>
</tbody>
</table>

1) Dimensions without 1.0 mm PP coating
Laying and fixing pipes

Only pipe clamps with chloride-free sound insulating inlays should be used to secure the pipes.

Observe the general rules of fixing technology:

- Do not use fixed pipelines as a support for other pipelines and components.
- Do not use pipe hooks.
- Observe distance to connectors.
- Observe the expansion direction: Plan fixed and gliding points.

Make sure to affix the pipelines in such a way as to de-couple them from the installation body, so that they cannot transfer any structure-borne sound, resulting from thermal expansion or possible pressure surges, onto the installation body or other components.

Observe the following fixing intervals:

<table>
<thead>
<tr>
<th>d [mm]</th>
<th>Fixing interval between the pipe clamps [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>1.25</td>
</tr>
<tr>
<td>15.0</td>
<td>1.25</td>
</tr>
<tr>
<td>18.0</td>
<td>1.50</td>
</tr>
<tr>
<td>22.0</td>
<td>2.00</td>
</tr>
<tr>
<td>28.0</td>
<td>2.25</td>
</tr>
<tr>
<td>35.0</td>
<td>2.75</td>
</tr>
<tr>
<td>42.0</td>
<td>3.00</td>
</tr>
<tr>
<td>54.0</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Length expansion

Pipelines expand with heat. Heat expansion is dependent on the material. Changes in length lead to tension within the installation. These tensions must be equalised with suitable measures.

<table>
<thead>
<tr>
<th>d x s [mm](^1)</th>
<th>Volume per metre of pipe [l/m]</th>
<th>Pipe weight [kg/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 x 1.5</td>
<td>1.19</td>
<td>1.60</td>
</tr>
<tr>
<td>54 x 1.5</td>
<td>2.04</td>
<td>2.10</td>
</tr>
</tbody>
</table>

\(^1\) Dimensions without 1.0 mm PP coating
The following are effective:
- Fixed and gliding points
- Expansion equalisation joints (expansion bends)
- Compensators

Heat expansion co-efficients of various pipe materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Heat expansion co-efficient $\alpha$ [mm/mK]</th>
<th>Example: Length expansion with pipe lengths $L = 20$ m and $\Delta T = 50$ K [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanised steel</td>
<td>0.0120</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Example:
Length expansion with pipe lengths $L = 20$ m and $\Delta T = 50$ K [mm]

![Graph](image)

Fig. 3: Length expansion steel pipes

1 - Length expansion $\Delta l$ [mm]
2 - Pipe length $l_0$ [m]
3 - Temperature difference $\Delta \theta$ [K]

The length expansion $\Delta l$ can be taken from the diagram or can be calculated using the following formula:

$$\Delta l = \alpha \ [mm/mK] \times L \ [m] \times \Delta \theta \ [K]$$
2.3.3 Press connectors

Press connectors are available in a number of shapes. An overview of the press connectors suitable for the system can be found in the catalogue.

![Press connectors](image)

*Fig. 4: Press connectors*

The press connectors have a circumferential bead in which the sealing element lies. The connector is deformed upstream and downstream of the bead and permanently connected to the pipe during pressing. The sealing element is not deformed during pressing.

**SC-Contur**

![SC-Contur](image)

*Fig. 5: SC-Contur*

Viega press connectors are equipped with the SC-Contur. The SC-Contur is a safety technology that is certified by the DVGW and ensures that the connector is guaranteed to be leaky in an unpressed state. In this way, inadvertently unpressed connections are noticed immediately when filling the system.

Viega ensures that inadvertently unpressed connections during installation become visible when the system is filled.
with wet leakage test in the pressure range from 0.1–0.65 MPa (1.0–6.5 bar)
with dry leakage test in the pressure range from 22 hPa–0.3 MPa (22 mbar–3.0 bar)

2.3.4 Sealing elements

The press connectors are factory-fitted with EPDM sealing elements. For areas of use with higher thermal resistance, such as e. g. in the case of district heat supply systems, the press connectors must be equipped with FKM sealing elements.

The sealing elements can be distinguished as follows:
- EPDM sealing elements are polished black.
- FKM sealing elements are matt black.

### Area of use of the EPDM sealing element

<table>
<thead>
<tr>
<th>Area of use</th>
<th>Heating</th>
<th>Solar installations</th>
<th>Air-conditioning systems</th>
<th>Compressed air</th>
<th>Technical gases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Pump hot water heating system</td>
<td>Solar circuit</td>
<td>Secondary circuit closed</td>
<td>all pipeline sections</td>
<td>all pipeline sections</td>
</tr>
<tr>
<td>Operating temperature (T_{\text{max}})</td>
<td>110 °C</td>
<td>(\geq -25 ^\circ\text{C})</td>
<td>60 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating pressure (P_{\text{max}})</td>
<td>1.6 MPa (16 bar)</td>
<td>0.6 MPa (6 bar)</td>
<td>1.0 MPa (10 bar)</td>
<td>1.6 MPa (16 bar)</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>(T_{\text{max}}) 105 °C(^2) with radiator connections (T_{\text{max}}): 95 °C</td>
<td>for flat collectors</td>
<td>Inhibitor for water chiller, see material resistance</td>
<td>dry, oil content (&lt; 25 \text{ mg / m}^3)</td>
<td>(^1)</td>
</tr>
</tbody>
</table>

\(^1\) Consultation with the Viega Service Center required
\(^2\) see “Regulations from section: Sealing elements” on page 6

### Area of use of the FKM sealing element

<table>
<thead>
<tr>
<th>Area of use</th>
<th>District heat supply</th>
<th>Solar installations</th>
<th>Compressed air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>District heat supply systems behind the external wall lead-in</td>
<td>Solar circuit</td>
<td>all pipeline sections</td>
</tr>
<tr>
<td>Operating temperature (T_{\text{max}})</td>
<td>140 °C</td>
<td>(^1)</td>
<td>60 °C</td>
</tr>
</tbody>
</table>

\(^1\) Consultation with the Viega Service Center required.
### Area of use

<table>
<thead>
<tr>
<th>Area of use</th>
<th>District heat supply</th>
<th>Solar installations</th>
<th>Compressed air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure (P_{\text{max}})</td>
<td>1.6 MPa (16 bar)</td>
<td>0.6 MPa (6 bar)</td>
<td>1.6 MPa (16 bar)</td>
</tr>
<tr>
<td>Comments</td>
<td>Needs to be coordinated with the utility company before installation.</td>
<td>For vacuum pipe collectors</td>
<td>dry, oil content (\geq 25 \text{ mg/m}^3)</td>
</tr>
</tbody>
</table>

1) Consultation with the Viega Service Center required.

### 2.3.5 Markings on components

#### Pipe marking

<table>
<thead>
<tr>
<th>Prestabo pipe, galvanised</th>
<th>Prestabo pipe, coated</th>
<th>Prestabo pipe for special applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>red continuous line</td>
<td>red continuous line</td>
<td>red dotted line</td>
</tr>
<tr>
<td>red writing</td>
<td>red writing</td>
<td>black writing</td>
</tr>
</tbody>
</table>

The pipe markings contain important information regarding the material configuration and manufacture of the pipes. The red line on the pipes serves as a warning: "Not suitable for drinking water!"

The meaning of the marking is as follows:

![Fig. 6: Galvanized pipe](image.png)

1 - system manufacturer / system name  
2 - DIN material number  
3 - \(d \times s\)  
4 - pipe manufacturer’s symbols  
5 - date of manufacture  
6 - batch number  
7 - symbol "Not suitable for drinking water!"
Fig. 7: Pipe PP coated

1 - system manufacturer / system name
2 - DIN material number
3 - Coating material
4 - d x s
5 - pipe manufacturer’s symbols
6 - date of manufacture
7 - batch number
8 - symbol "Not suitable for drinking water!"

Markings on press connectors

The press connectors are marked with a coloured dot. This identifies the SC-Contur, where the test medium would escape in the case of an inadvertently unpressed connection.

The red dot indicates that the system is not suitable for drinking water and is equipped with the SC-Contur.
The red rectangle serves as a warning "Not suitable for drinking water!". The rectangle is to be found in the following places:

- on the press end of the press connector
- on the flange of the flange adapter

![Fig. 9: Marking "Not suitable for drinking water"](image)

![Fig. 10: Marking "Not suitable for drinking water"](image)

2.4 Information for use

2.4.1 Corrosion

Internal corrosion (three-phase boundary)

Corrosion can occur in the area of the three-phase boundary – water/material/air – in metallic materials. This corrosion can be prevented if the system remains completely full of water after its first filling and bleeding. If the installation is not to be commissioned immediately, it is recommended that the pressure and leakage test is carried out using air or inert gases, see "Chapter 3.4.7 „Leakage test“ on page 29."
Prestabo system in cooling water circuits

The Prestabo system, in combination with externally galvanised pipes, can be used with its moulded and connection pieces in all closed cooling water circuits in which no oxygenation is possible during operation.

Due to the operating conditions in cooling water systems, it may be necessary to add anti-freeze to the carrier medium. The standard sealing elements made of EPDM can be used up to a glycol content of 50% of the total water content. Internally and externally hot dip galvanised Viega pipes are not suitable for use in this case.

The re-filling of a system does not normally lead to significant oxygenation, see "Regulations from section: Corrosion" on page 6. However, the oxygenation can lead to damage (corrosion) in the system, if the circulating water is regularly replaced due to losses and (e.g. automatic topping up) considerable quantities of fresh water were added.

The oxygen content of low salt water should be <0.1 mg/l, in the case of saline water, be <0.02 mg/l, see "Regulations from section: Corrosion" on page 6.

Complete external corrosion protection, which reliably prevents corrosive influences, must be applied when using in cooling circuits. Observe the manufacturer’s product information and the pertinent guidelines, see "Regulations from section: Corrosion" on page 6.

External corrosion

Prestabo pipes and the connectors are protected by a thin galvanic zinc-plating coat. This galvanisation protects against moist surroundings, however not against external corrosion on a permanent basis. The system is intended for installation in warm and dry atmospheres. The components should not normally come into contact with water when properly installed and used as intended.

Constant moisture on the pipe

Constant dampness on the pipe occurs due to the following conditions e.g.:

- due to condensation or precipitation during the construction phase
- Condensation (e.g. when used in cooling circuits)
- through cleaning or splash water as well as wastewater through defect floor seals etc.
- when water reaches the pipeline installation in a non-intended way, e.g. due to a construction defect or water damage in the building.

Protective measures against external corrosion

The following measures should be observed to protect the Prestabo system from external corrosion:

- Lay the pipelines outside of the areas at risk of dampness.
- Avoid contact with corrosive building materials (e.g. filler or levelling screed).
Use waterproof separating foil in the floor construction to protect the laid pipelines against possible dampness, e. g. screed dampness. The overlapping foil overlaps must be sealed tightly.

- Use closed-cell insulating hoses and seal properly. Take particular care to stick all of the abutting ends and cut edges together. However, the measures are no substitute for potentially necessary and additional corrosion protection.

- In the case of installations, e. g. in industrial areas, which are contaminated with aggressive ambient air, observe the internal factory standards.

**Corrosion due to cleaning water**

In areas where daily cleaning of the floor is deemed necessary (e. g. in hospitals), corrosion can also be caused by water and cleaning agent coming into contact with visible radiator connection lines that protrude from the floor. The water can seep through leaky joints between pipeline and the floor covering into the insulation. It is unable to escape and this leads to constant dampness around the pipes, which leads to external corrosion.

Disinfectant can also have a corrosive effect on pipelines.

**Recommended measures to protect from corrosion due to cleaning water**

- Favour radiator connections out of the wall.
- Use plastic coated Prestabo pipes for connections coming out of the floor.
- Seal joints between pipeline and floor covering properly. Silicone joints must be maintained regularly.

Viega recommends to use the PP coated Prestabo pipe (model 1104) for laying the Prestabo system in the floor area or for concealed installation. The press connectors and pipe ends must be treated with a corrosion prevention agent — e. g. Denso Densolen ET 100, to ensure constant protection against corrosion. The relevant processing guidelines must be observed, whilst doing so.
3 Handling

3.1 Transport

Observe the following when transporting pipes:
- Do not pull the pipes over the sill. The surface could be damaged.
- Secure pipes during transportation. Pipes may become bent due to shifting.
- Do not damage the protective caps on the pipe ends and do not remove them until immediately before mounting. Damaged pipe ends may not be pressed.

3.2 Storage

For storage, comply with the requirements specified in the applicable regulations, see "Regulations from section: Storage" on page 7:
- Store components in a clean and dry place.
- Provide ventilation.
- Do not store the components directly on the floor.
- Provide at least three points of support for the storage of pipes.
- Do not cover the pipes with foils, prevent the formation of condensation.
- Where possible, store different sizes separately.
  Store small sizes on top of larger sizes if separate storage is not possible.
- To prevent contact corrosion, store pipes of different materials separately.

3.3 Assembly information

3.3.1 Mounting instructions

Checking system components

System components may, in some cases, become damaged through transportation and storage.
- Check all parts.
- Replace damaged components.
Do not repair damaged components. Contaminated components may not be installed.

3.3.2 Potential equalisation

**DANGER!**

Danger due to electrical current

An electric shock can lead to burns and serious injury and even death.

Because all metallic piping systems conduct electricity, unintentional contact with a live part can lead to the whole piping system and components connected to it (e.g. radiators) becoming energised.

- Only allow electrical work to be carried out by qualified electricians.
- Always integrate the metallic piping system into the potential equalisation.

It is the fitter of the electrical system who is responsible for ensuring that the potential equalisation is tested and secured.

3.3.3 Permitted exchange of sealing elements

**Important instruction**

With their material-specific qualities, sealing elements in press connectors are adapted for use with the corresponding media and/or the areas of use of the piping systems and are generally only certified for them.

The exchange of a sealing element is generally permitted. The sealing element must be exchanged for a designated spare part for the intended application. Chapter 2.3.4 “Sealing elements” on page 14. The use of other sealing elements is not permitted.

Exchanging a sealing element is permitted in the following situations:

- if the sealing element in the press connector is obviously damaged and should be exchanged for a Viega replacement sealing element made of the same material
- if an EPDM sealing element should be exchanged for an FKM sealing element (higher thermal resistance, e.g. for industrial use)
### 3.3.4 Space requirements and intervals

#### Pressing between pipelines

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>22</th>
<th>28</th>
<th>35</th>
<th>42</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Space requirement PT1, type 2 (PT2), PT3-EH, PT3-AH, Pressgun 4B, 4E, 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Space requirement Picco, Pressgun Picco

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>22</th>
<th>28</th>
<th>35</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a [mm]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td><strong>b [mm]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

#### Space requirement press ring

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>22</th>
<th>28</th>
<th>35</th>
<th>42</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>a [mm]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>b [mm]</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Pressing between pipe and wall

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>22</th>
<th>28</th>
<th>35</th>
<th>42</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Space requirement PT1, type 2 (PT2), PT3-EH, PT3-AH, Pressgun 4B, 4E, 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Space requirement Picco, Pressgun Picco

<table>
<thead>
<tr>
<th>d</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>22</th>
<th>28</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>a [mm]</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>b [mm]</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>c [mm]</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Space requirement press ring

<table>
<thead>
<tr>
<th>d</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>22</th>
<th>28</th>
<th>35</th>
<th>42</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>a [mm]</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>b [mm]</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>c [mm]</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>

Minimum interval with d 12–54

<table>
<thead>
<tr>
<th>Press machine</th>
<th>(a_{\text{min}} [\text{mm}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT1</td>
<td>45</td>
</tr>
<tr>
<td>Type 2 (PT2)</td>
<td></td>
</tr>
<tr>
<td>Type PT3-EH</td>
<td></td>
</tr>
<tr>
<td>Type PT3-AH</td>
<td>50</td>
</tr>
<tr>
<td>Pressgun 4E / 4B</td>
<td></td>
</tr>
<tr>
<td>Pressgun 5</td>
<td></td>
</tr>
<tr>
<td>Picco / Pressgun Picco</td>
<td>35</td>
</tr>
</tbody>
</table>

Distance to walls

Interval between the pressings

NOTICE!
Leaky press connections due to pipes being too short!
If two press connectors are to be mounted onto a pipe without an interval, the pipe must not be too short. If the pipe is not inserted up to the prescribed insertion depth in the press connector during pressing, the connection may become leaky.

With pipes with a diameter of d 12–28, the length of the pipe must be at least as long as the total insertion depth of both press connectors.
Minimum interval with press jaws d 12–54

<table>
<thead>
<tr>
<th>d</th>
<th>$a_{\text{min}}$ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>42</td>
<td>15</td>
</tr>
<tr>
<td>54</td>
<td>25</td>
</tr>
</tbody>
</table>

Z dimensions

For the Z dimensions, refer to the respective product page in the online catalogue.

3.3.5 Required tools

The following tools are required for production of a press connection:

- pipe cutter or a fine-toothed hacksaw
- deburrer and coloured pen for marking
- press machine with constant pressing force
- press jaw or press ring with corresponding adapter jaw, suitable for the pipe diameter and suitable profile
- for coated pipes:
  - chamfer (recommended model 1158)

Recommended Viega press machines:

- Pressgun 5
- Pressgun Picco
3.4 Assembly

3.4.1 Replacing the sealing element

Removing the sealing element

Do not use pointed or sharp-edged objects to remove the sealing element. These could damage the sealing element or bead.

- Remove the sealing element from the bead.

Inserting the sealing element

- Insert a new, undamaged sealing element into the bead.
- Ensure that the complete sealing element is in the bead.
3.4.2 Bending pipes

Blank Prestabo pipes in the sizes d 12, 15, 18, 22 and 28 can be bent cold with commercially available bending equipment (radius at least 3.5 x d).

*If possible do not bend coated Prestabo pipes because no suitable bending tool is available.*

The pipe ends (a) must be at least 50 mm long so that the press connectors can be mounted properly.

3.4.3 Shortening the pipes

**NOTICE!**

*Leaky press connections due to damaged material!*

Press connections can become leaky due to damaged pipes or sealing elements.

Observe the following instructions to avoid damage to pipes and sealing elements:

- Do not use cutting discs (angle grinders) or flame cutters when cutting to length.
- When cutting coated pipes to length, do not use pipe cutters, use a fine-toothed saw.
- Do not use grease or oils (e. g. cutting oil).

For information about tools, also see *Chapter 3.3.5 „Required tools“ on page 24.*

- Cut the pipe properly using a pipe cutter or fine-toothed hacksaw.
  
  Avoid grooves on the pipe surface.

3.4.4 Stripping pipes

When dealing with coated pipes, the plastic coating must be removed from the area around the press connections by means of a chamfer (model 1158).
The use of other chamfer tools is not permitted.

- Remove coating from the pipe end using a chamfer.

**Do not sharpen the blades of the chamfer, replace the blades.**

### 3.4.5 Deburring the pipes

The pipe ends must be thoroughly deburred internally and externally after shortening.

Deburring prevents the sealing element being damaged or the press connector cants when mounted. Use of a deburrer (model 2292.2) is recommended.

**NOTICE!**

**Damage due to the wrong tool!**

Do not use sanding disks or similar tools when deburring. The pipes could be damaged by these.

- Deburr the inside and outside of the pipe.
3.4.6 Pressing the connection

Requirements:
- The pipe end is not bent or damaged.
- The pipe is deburred.
- The correct sealing element is in the press connector.
  - EPDM = polished black
  - FKM = matt black
- The sealing element is undamaged.
- The complete sealing element is in the bead.

Push the press connector onto the pipe as far as it will go.

Mark the insertion depth.

Place the press jaw onto the press machine and push the retaining bolt in until it clicks into place.

INFO! Observe the press tool instruction manual.
Open the press jaw and place at a right-angle onto the connector.

Check the insertion depth using the marking.

Ensure that the press jaw is placed centrally on the bead of the press connector.

Carry out the pressing process.

Open and remove the press jaw.

Connection is pressed.

3.4.7 Leakage test

The installer must perform a leakage test before commissioning.

Carry out this test on a system that is finished but not yet covered.

Observe the applicable regulations, see "Regulations from section: Leakage test" on page 7.

The leakage test pursuant to the applicable regulations must also be carried out for non-drinking water installations, see "Regulations from section: Leakage test" on page 7.

Document the result.

To prevent corrosion, the system must remain full of water after the leakage test has been performed.

For the filling and top-up water, comply with the requirements specified in the applicable regulations, see "Regulations from section: Leakage test" on page 7.
3.5 Disposal

Separate the product and packaging materials (e.g. paper, metal, plastic or non-ferrous metals) and dispose of in accordance with valid national legal requirements.